Computational framework for next-generation sequencing of heterogeneous viral populations using combinatorial pooling
نویسندگان
چکیده
MOTIVATION Next-generation sequencing (NGS) allows for analyzing a large number of viral sequences from infected patients, providing an opportunity to implement large-scale molecular surveillance of viral diseases. However, despite improvements in technology, traditional protocols for NGS of large numbers of samples are still highly cost and labor intensive. One of the possible cost-effective alternatives is combinatorial pooling. Although a number of pooling strategies for consensus sequencing of DNA samples and detection of SNPs have been proposed, these strategies cannot be applied to sequencing of highly heterogeneous viral populations. RESULTS We developed a cost-effective and reliable protocol for sequencing of viral samples, that combines NGS using barcoding and combinatorial pooling and a computational framework including algorithms for optimal virus-specific pools design and deconvolution of individual samples from sequenced pools. Evaluation of the framework on experimental and simulated data for hepatitis C virus showed that it substantially reduces the sequencing costs and allows deconvolution of viral populations with a high accuracy. AVAILABILITY AND IMPLEMENTATION The source code and experimental data sets are available at http://alan.cs.gsu.edu/NGS/?q=content/pooling.
منابع مشابه
Computational Methods for Sequencing and Analysis of Heterogeneous RNA Populations
Next-generation sequencing (NGS) and mass spectrometry technologies bring unprecedented throughput, scalability and speed, facilitating the studies of biological systems. These technologies allow to sequence and analyze heterogeneous RNA populations rather than single sequences. In particular, they provide the opportunity to implement massive viral surveillance and transcriptome quantification....
متن کاملNext Generation Sequencing and its Application in the Study of Microbiome in Plant Diseases Suppressive Soils
Progress in next-generation sequencing has played a significant role in ecological studies of microbial populations. These advances have led to a rapid evaluation in metagenomics studies (analysis of DNA of microbial communities without the need to culture). Many statistical and computational tools and metagenomics databases have led to the discovery of huge amounts of data. In this research, i...
متن کاملDevelopment of a Low Bias Method for Characterizing Viral Populations Using Next Generation Sequencing Technology
BACKGROUND With an estimated 38 million people worldwide currently infected with human immunodeficiency virus (HIV), and an additional 4.1 million people becoming infected each year, it is important to understand how this virus mutates and develops resistance in order to design successful therapies. METHODOLOGY/PRINCIPAL FINDINGS We report a novel experimental method for amplifying full-lengt...
متن کاملNext-Generation Sequencing Reveals One Novel Missense Mutation in COL1A2 Gene in an Iranian Family with Osteogenesis imperfecta
Background: Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disorder characterized by bone loss and bone fragility. The aim of this study was to investigate the variants of three genes involved in the pathogenesis of OI. Methods: Molecular genetic analyses were performed for COL1A1, COL1A2, and CRTAP genes in an Iranian family with OI. The DNA samples were analyzed by...
متن کاملFull-length haplotype reconstruction to infer the structure of heterogeneous virus populations
Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2015